A semi-supervised multi-label classification framework with feature reduction and enrichment
نویسندگان
چکیده
منابع مشابه
Semi-Supervised Dimension Reduction for Multi-Label Classification
A significant challenge to make learning techniques more suitable for general purpose use in AI is to move beyond i) complete supervision, ii) low dimensional data and iii) a single label per instance. Solving this challenge would allow making predictions for high dimensional large dataset with multiple (but possibly incomplete) labelings. While other work has addressed each of these problems s...
متن کاملSemi-supervised Learning for Multi-label Classification
In this report we consider the semi-supervised learning problem for multi-label image classification, aiming at effectively taking advantage of both labeled and unlabeled training data in the training process. In particular, we implement and analyze various semi-supervised learning approaches including a support vector machine (SVM) method facilitated by principal component analysis (PCA), and ...
متن کاملA Convex Formulation for Semi-Supervised Multi-Label Feature Selection
Explosive growth of multimedia data has brought challenge of how to efficiently browse, retrieve and organize these data. Under this circumstance, different approaches have been proposed to facilitate multimedia analysis. Several semi-supervised feature selection algorithms have been proposed to exploit both labeled and unlabeled data. However, they are implemented based on graphs, such that th...
متن کاملA Semi-Supervised Framework for Feature Mapping and Multiclass Classification
We propose a semi-supervised framework incorporating feature mapping with multiclass classification. By learning multiple classification tasks simultaneously, this framework can learn the latent feature space effectively for both labeled and unlabeled data. The knowledge in the transformed space can be transferred not only between the labeled and unlabeled data, but also across multiple classes...
متن کاملA Multi-label Text Classification Framework: Using Supervised and Unsupervised Feature Selection Strategy
Text classification, the task of metadata to documents, requires significant time and effort when performed by humans. Moreover, with online-generated content explosively growing, it becomes a challenge for manually annotating with large scale and unstructured data. Currently, lots of state-or-art text mining methods have been applied to classification process, many of them based on the key wor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Information and Telecommunication
سال: 2017
ISSN: 2475-1839,2475-1847
DOI: 10.1080/24751839.2017.1364925